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1. Uncertainty components in fetal GA estimates 6 
The uncertainty in gestational age (GA) estimates can be separated into two components: 7 
a) the uncertainty in the time of conception; and, b) the uncertainty due to heterogeneity 8 
in fetal growth rates.  We determine each component from the data in 1.  In the second 9 
and third trimesters, the total GA uncertainty is dominated by the component due to 10 
growth-rate heterogeneity. 11 
 12 
Consider the uncertainty components:   13 

a) Uncertainty in the time of conception (“time-zero”) ;  14 
b) Heterogeneity in fetal growth rates . 15 

 16 
As these components are independent, the total uncertainty is given by: 17 
  . (1) 18 
 19 
The analysis below is based on the following premises: 20 

1. The total uncertainty, , is a function of GA, defined as the mean GA of the 21 
population within the relevant time-bin (see Table 3 of 1); 22 

2. The time-zero component  is non-negative, and GA-independent; 23 
3. The heterogeneity component depends on GA, is non-negative, and zero at 24 

GA=0. 25 
 26 
Denoting GA by  for convenience, 1 offers two expressions for in days: 27 

  , (Eq. (1) of 1) , (2) 28 

  ,  (Eq. (2) of 1) , (3) 29 
with the superscript SD indicating the standard deviation (rather than the 95% half-30 
interval).  Eq.(3) has a negative intercept at , i.e., a negative , and thus 31 
unphysical.  By using a third-order polynomial of the form: 32 
    (4) 33 

to fit , we have verified that Eq.(2) satisfies the condition , i.e., the 34 
heterogeneity component is always non-negative. 35 
 36 
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 37 
Figure. A1.  Plot of total GA uncertainty vs. GA. The total uncertainty (blue) stems from 38 

1.  Red pertains to Eq.(2) above. 39 
 40 
The resulting time-zero uncertainty obtained from the  intercept of Eq.(2) is 41 

 days.  As shown in Fig. A2 below, 95% of the time-zero 42 
corrections performed by the geometric machine learning algorithm are contained within 43 
7 days, in close agreement with the 6 days derived above.  The (time-dependent) 44 
heterogeneity component can now be determined from: 45 
  . (5) 46 
The resulting 95% half-interval due to heterogeneity is shown in Fig. A3 below. 47 
 48 
Implications for GA estimation 49 
The time-zero contribution to the total uncertainty is at most 23% of the total uncertainty 50 
over the 20-30 weeks range, where the geometric algorithm currently operates.  The 23% 51 
estimate is reached as follows.  By definition, .  As previously stated, , 52 
the time-zero uncertainty is 6 days.  From 1, at 20 weeks’ GA,  days, giving 53 

 days.  Thus,   This means at 20 weeks’ GA, 54 

leaving out the time-zero uncertainty changes the total uncertainty by 23%.  At 30 week’s 55 
GA,  , and leaving out the time-zero uncertainty 56 

changes the total uncertainty by only 6%. 57 
 58 
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 59 
Figure A2.  Plot of GA time-zero corrections performed by the geometric algorithm. The 60 

half-width of the time-zero correction covering 95% of “reads” for previously 61 
unseen (“test”) data is 7 days. 62 

 63 
 64 

 65 
Figure A3.  Total uncertainty in fetal GA estimates (blue), and the component due to 66 

heterogeneity in fetal growth rates (green). 67 
 68 
2. Conceptual outline 69 
Typically, an ultrasonographic fetal measure yields the values of a few biometric 70 
variables, e.g., the femur length, the head circumference, and the abdominal 71 
circumference.  For simplicity, assume three biometric variables have been measured.  72 
Then an ultrasonographic measure can be represented as a point in three-dimensional 73 
space with each of x, y, and z corresponding to one of the three biometric variables 74 
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(Figure A4-A).  A collection of such measures produces a cloud of points in three-75 
dimensional space.  In general, this cloud would itself be three-dimensional.  But the 76 
three variables representing the fetal biometric dimensions are not independent.  For 77 
example, a fetus with a long femur is likely to have a large head.  This means the cloud of 78 
points formed by the collection of all fetal data has a dimensionality lower than three.  79 
Our analysis in fact shows the data from a large number of fetuses form a two-80 
dimensional cloud.  Technically, the cloud of points lie on a two-dimensional manifold, 81 
essentially a curved sheet.  Identifying this manifold is helpful, because projecting the 82 
data points onto it filters out much of the noise inherent to real-world data. 83 
 84 

Figure A4.  Schematic diagram of the approach used to determine the fetal gestational 85 
age and forecast its future growth. 86 

 87 
Next, consider the data points obtained from a single fetus as the pregnancy advances 88 
(data points of the same color).  Because the fetus is growing, these points define a line 89 
on the two-dimensional sheet.  This line represents the growth trajectory of the fetus 90 
under consideration.  One can deduce the growth trajectory of an “average” fetus by 91 
fitting a single line to all the data points on the manifold (Figure A4-B).  This line 92 
represents the growth trajectory of a canonical (“model”) fetus. 93 
 94 
This fit stems from all fetuses in the dataset, each with a different (and inaccurately 95 
known) time of conception.  The process of fitting a line in effect averages over these 96 
uncertainties, substantially reducing the uncertainty in the time of conception for the 97 
“model fetus” (yellow line of Figure A4-B). 98 
 99 
This line is, nonetheless, highly informative; it encapsulates the properties of the class of 100 
lines, each of which represents the growth trajectory of a specific, yet to be identified 101 
fetus (Figure A4-C) (SA sections 4 - 7). 102 
 103 
Given two or more sets of biometric data from a fetus, one can quickly identify the 104 
specific line best able to describe this fetus’ growth trajectory.  This is done by 105 
identifying the line best able to “predict” the time interval between successive biometric 106 
measures, which is accurately known.  The discrepancy between this prediction and the 107 
known time interval between visits represents the error (“uncertainty”) in our gestational 108 
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age estimation.  In fact, for most fetuses, a single set of biometric data suffices to 109 
determine the fetal growth trajectory and estimate the gestational age with a prediction 110 
interval of less than 3 days. 111 
 112 
Armed with the line best able to describe the growth trajectory of a given fetus, one can 113 
predict its future biometric data, and hence its future growth trajectory. Again, 114 
comparison with the time between actual measures allows us to estimate the prediction 115 
accuracy.  The accuracy can be quantified by reference to the difference between 116 
predicted and actual fetal dimensions.  More succinctly, it can be expressed as the 117 
uncertainty in a prediction of the fetal age, i.e., as the time-correction needed to eliminate 118 
the error in the fetal dimensions. 119 
 120 
The conceptual outline presented above ignores important aspects of our approach.  For 121 
example, simply fitting a line to all fetal data as implied above would obviate the 122 
possibility to extract fetus-specific information, much as averaging images of many 123 
people eliminates personal characteristics.  As described in detail in 2 and in the SA 124 
sections 4 - 7, our machine-learning approach circumvents such problems.  Broadly 125 
speaking, this type of capability is routinely demonstrated by increasingly ubiquitous 126 
facial-recognition technologies, which recognize individuals after training with 127 
populations of individuals.  A discussion of these and other essential algorithmic features, 128 
described and experimentally validated elsewhere 2-4, is beyond the scope of the present 129 
paper. 130 
 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 
 142 
 143 
 144 
 145 

 146 
 147 
 148 
 149 
 150 
 151 
 152 
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3. Analytical pipeline 153 
A schematic diagram of the analytical pipeline is shown in Fig. A5 below.   154 

 155 
Figure A5.  Schematic representation of the analytical pipeline. 156 

 157 
 158 
 159 
 160 
 161 
 162 
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4. Geometric Machine Learning 163 
Geometric (manifold-based) Machine Learning is a key element of our analytical 164 
pipeline.  This data-analytical approach is methodically transparent, mathematically 165 
rigorous, and unsupervised. (See, e.g., 2,5-7 and references therein.) 166 
 167 
The algorithm accepts vector data as input.  Here, each vector is comprised of an 168 
ultrasound measure of the fetal HC, AC, and FL time-stamped according to a LMP-based 169 
estimate of the gestational age (GALMP) 1. 170 
 171 
A fetal biometric measure can be represented as a point in the three-dimensional space 172 
spanned by HC, AC and FL.  Taken together, the data produce a cloud of points in this 173 
space, with each point representing a data vector.  It is, however, more meaningful to 174 
resort to a space spanned by functions, more specifically eigenfunctions of the Laplace-175 
Beltrami operator, which are learned from the data to reflect the intrinsic geometry of the 176 
dataset.8  In this more abstract representation, the data cloud defines a curved hyperplane 177 
– a manifold.  The distance between data points on this manifold is a measure of their 178 
similarity, with shorter distances representing closer similarity.  At this stage, no timing 179 
information is used.   180 
 181 
In this picture, the manifold represents all measures made available to the algorithm, with 182 
the developmental trajectory of a particular fetus corresponding to a specific trajectory on 183 
the manifold.  This trajectory connects a time-ordered series of measures from a fetus 184 
(Fig. A6).  As shown in Fig. A5 and outlined in Methods section of the paper, we use a  185 
portion of the data to obtain the manifold (“training”), with the remainder of the data 186 
reserved to evaluate performance (“test”).   187 
 188 

 189 
Figure A6. Schematic diagram of the data manifold formed by the dataset, and a 190 

particular growth (dynamic) trajectory on the manifold. 191 
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5. Nonlinear Laplacian Spectral Analysis 192 
As shown in detail elsewhere 2, timing jitter and measurement noise can be substantially 193 
reduced by singular-value analysis of “supervectors” on the manifold by Nonlinear 194 
Laplacian Spectral Analysis (NLSA) 7. Each supervector consists of a concatenated set of 195 
1024 data vectors ordered according to the available (i.e., inaccurate) timestamps.  The 196 
outcome of the NLSA approach is the jitter-corrected, noise-reduced dynamical trajectory 197 
of the data used for training 2.  The approach also reveals the characteristic combinations 198 
of measures acting as principal components of fetal growth, ranked in order of power (see 199 
Fig. A7). 200 

 201 
 202 

Figure A7.  The top three characteristic modes determining fetal growth in our analysis.  203 
As the relative contribution of each measure is time-dependent, time-averages 204 
are shown.  The relative amplitudes of the three modes are 1 : 0.04 : 0.01. 205 

 206 
6. Previously unseen fetuses 207 
GA estimation 208 
Predicting the GA of a previously unseen fetus proceeds as follow.  The eigenfunctions 209 
obtained by training are confined to the manifold.  These manifold eigenfunctions must 210 
be extended to previously unseen data.  We use the Nyström extension scheme outlined 211 
in 9 , and described in more detail below.  This approach self-consistently varies the 212 
width of a kernel (here denoted ) to extend the manifold eigenfunctions to previously 213 
unseen data, subject to user-specified bounds on the power lost due to truncating 214 
eigenfunctions beyond a certain number .  We use this scheme, with minor 215 
modifications, to generate a family of extended eigenfunctions, each characterized by a 216 
different set of  and .  For a particular, previously unseen fetus, we select that 217 
member of the family, which best predicts the independently known time interval 218 
between two ultrasound scans.  With the appropriate extended eigenfunctions in hand, the 219 
GA can be estimated for each fetus (Method A in main text).   220 
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Accuracy of GA estimates  221 
We infer the error in our estimates by reference to the discrepancy between the predicted 222 
and actual time intervals between the ultrasound measures.  The accuracy of better than 3 223 
days (95% half-interval) is maintained for first visits between 20 and 30 weeks’ gestation 224 
followed by a second visit within 10 weeks of the first visit.  This corresponds to a total 225 
time span of 40 weeks, including the 10-week intervisit gap.  These results quantify the 226 
ability of our approach to recover reliable dynamical information over timespans 227 
comparable with a term pregnancy.  Our error estimates are validated by a number of 228 
different train/test data splits (Fig. A5).  229 
 230 
7. Forecasting fetal growth (Method C) 231 
As outlined above, our approach identifies the class of growth trajectories best able to 232 
describe fetal growth dynamics.  These so-called empirical functions are derived from the 233 
training data, which cover the entire pregnancy.  One can, therefore, use these functions 234 
to forecast the future growth trajectory of any previously unseen fetus.  Specifically, 235 
having selected the function best able to reproduce an intervisit interval for a specific 236 
fetus, the algorithm can be asked to use the same functions to predict the intervals to 237 
subsequent measurements for the same fetus.  These predictions can then be compared 238 
with the actual known intervals. 239 
 240 

 

Figure A8.  Accuracy of forecasting fetal growth.  241 
  242 
As shown in Figure A8, the error in such forecasts consists of two components: a 243 
systematic shift of the mean (bias); and dispersion about the mean.  As bias is the average 244 
over an ensemble, it can be determined in training and subtracted.  After correcting for 245 
the bias, the 6-week forecast uncertainty is 7 days.  With the current data, we are able to 246 
demonstrate this capability only when the second visit occurs between 22 and 24 weeks 247 
of gestation.  As forecasts are necessarily less accurate than present-day measures, the 7-248 
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day error estimate of Method C strongly corroborates the estimates obtained by Methods 249 
A and B. 250 
 251 
8. Data preprocessing & analysis 252 
The dataset used here consists of 4299 participants, and 20870 measurements of HC, AC 253 
and FL each at a GA estimated from GALMP.  Each biometric variable was normalized 254 
through division by the largest value of the variable in the dataset, to place all three 255 
variables on the same footing.  To ensure the analysis is not biased by variations in the 256 
number of snapshots per time interval, the distribution of measures in time was rendered 257 
uniform by random subsampling of the training data.  Following a procedure described 258 
and validated elsewhere 10, training data were ordered according to their inaccurate 259 
timestamps and concatenated to form supervectors, each consisting of 1024 frames.   260 
 261 
The manifold of supervectors was obtained at the optimum manifold-embedding kernel, 262 
as determined previously 11. The supervectors were subjected to NLSA to mitigate timing 263 
jitter.  NLSA is, in essence, a singular-value decomposition 12 on the curved manifold of 264 
supervectors, taking into account the Riemannian measure 7. 265 
 266 
Unless otherwise stated, the results presented in this paper are robust to changes in 267 
parametric values, including the kernel width, the number of nearest neighbors and the 268 
concatenation parameter.  Further details of the approach and its robustness to parametric 269 
choices are available in 10.   270 
 271 
This analysis yields a canonical description of fetal growth, essentially free of timing 272 
jitter.   The outcome of the algorithm consists of (N – 2c + 1) frames of a movie, with N 273 
the initial number of single frames, and c the number of frames in each superframe.  Each 274 
output frame constitutes a snapshot of the canonical fetal dimensions at an accurately 275 
known time point. 276 
 277 
For the training data, the GA can be expressed as a function on the learned manifold: 278 

𝐺𝐺𝐺𝐺(𝑥𝑥) =  ∑ 𝑐𝑐𝜎𝜎,ℓ𝜑𝜑𝜎𝜎,ℓ(𝑥𝑥)ℓ≥0  , 279 
where the index 𝑥𝑥 refers to a frame of the canonical development trajectory (a triplet of 280 
biometric measures), and 𝜎𝜎 the width of the kernel used in the expansion. 281 
 282 
This expansion can be extended to previously unseen data by a Nyström extension 283 
scheme described in 9.  The scheme can be used to generate a family of eigenfunctions 284 
denoted by the width of the kernel .   285 
 286 
The GA of a previously unseen fetus can now be expanded in terms of the extended 287 
eigenfunctions 𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥): 288 

𝐺𝐺𝐺𝐺����𝜎𝜎,𝑘𝑘(𝑥̅𝑥) ≡  ∑ 𝑐𝑐𝜎𝜎,ℓ𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥) ℓ<𝑘𝑘 . 289 
The extension involves members of a family denoted by two parameters: the number of 290 
extended eigenfunctions 𝑘𝑘 used in the sum above, and the kernel width 𝜎𝜎. 291 
 292 
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The time interval between two visits is exactly known for each fetus.  This information 293 
can be used to identify the  (𝜎𝜎,𝑘𝑘), which minimizes the discrepancy between the 294 
predicted and known intervisit time intervals (Method A in main text).  The parameters 𝜎𝜎 295 
and 𝑘𝑘 constitute fetus-specific, i.e., “personal”, parameters.  In practice, one selects the 296 
appropriate (𝜎𝜎,𝑘𝑘) from a prestored databank. 297 
 298 
The recorded GA for individual visits suffers from time-zero uncertainty, but the 299 
intervisit time interval - the time difference between the visits of a given participant - is 300 
immune to shifts in time-zero.  Choosing (𝜎𝜎,𝑘𝑘) based on the intervisit interval thus 301 
allows one to identify the set of extended functions best able to describe the fetal growth 302 
dynamics, independently of time-zero uncertainty.   Thus, the approach described above 303 
can be used to determine the GA and growth trajectory of each previously unseen fetus, 304 
without being compromised by time-zero uncertainty. 305 
 306 
For the majority of the participants, our approach can provide an accurate GA estimate 307 
from a single set of ultrasound measures (i.e., a single visit) (Method B in main text). 308 
Such cases are characterized by insensitivity to the choice of (𝜎𝜎, 𝑘𝑘), which results in a 309 
strongly peaked histogram of GA predictions.  For the remaining cases, the algorithm 310 
returns that “an estimate more accurate than that based on LMP requires a further 311 
ultrasound examination after a suitable time interval”; or “a different approach for 312 
gestational age estimation may be needed”. 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 



NOT FOR DISTRIBUTION 
 

13 
 

9. Comparative performance of GA estimation methods 337 
 Current Clinical Methods1 New Method 

(Single Visit) 
New Method 
(Two Visits) 

Biometric 
Measures 

HC HC & FL HC, FL, & AC 

GA (Weeks) Half-width 
of 95% 
prediction 
interval 

Half-width 
of 95% 
prediction 
interval 

Half-width 
of 95% 
prediction 
interval 

Percentage 
of cases 
where 
estimation is 
possible* 

Half-width 
of 95% 
prediction 
interval 

Percentage 
of cases 
where 
estimation is 
possible 

20 9.4 8.7 N/A N/A 2.4 100% 
22 10.5 9.8 3.1 22.4% 1.8 100% 
24 11.9 10.9 2.7 61.2% 1.5 100% 
26 13.5 12.0 3.1 71.2% 1.6 100% 
28 15.4 13.2 3.2 66.6% 1.4 100% 
30 17.6 14.3 3.4 37.0% 1.9 100% 

Table. A1.  GA estimation performance of current clinical methods1 and the new 338 
machine learning algorithm. All 95% prediction intervals are in days. Results 339 
presented here pertain to a particular train/test run (dataset divided into 4 groups, 20 340 
visits per day-bin used in training), but results for different train/test runs vary by no 341 
more than a day in prediction interval, and/or a few percentage points in the number 342 
of single-visit estimates.  343 

 * Single-visit cases yielding no estimate in a particular train/test run can produce 344 
an estimate in a different run (e.g., with a different number of visits per day in 345 
training). By combining results of multiple runs, GA estimates can be produced 346 
for practically all single-visit data in the 22-30 week window. 347 

 348 
 New Method 

(Single Visit) 
New Method 
(Two Visits) 

GA (Weeks) Percentage with 
estimation error > 
1 week 

Percentage with 
estimation error > 
2 weeks 

Percentage with 
estimation error > 1 
week 

Percentage with 
estimation error > 
2 weeks 

20 N/A N/A 0.7% 0.0% 
22 0.0% 0.0% 0.4% 0.0% 
24 0.0% 0.0% 0.4% 0.0% 
26 0.7% 0.1% 0.3% 0.0% 
28 0.4% 0.1% 0.2% 0.0% 
30 0.5% 0.0% 0.4% 0.1% 

Table. A2. Distribution of the GA estimation error for new estimation method. 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
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 359 
10. Pseudo-code 360 
The following pseudo-code clarifies the structure and implementation of the algorithm. 361 
 362 
Training 363 
Input 364 

Ultrasound measurements. 365 
Recorded GA at times of visits. 366 

 367 
Output 368 

Model data {𝑥𝑥}, at uniformly spaced GA time points {𝐺𝐺𝐺𝐺(𝑥𝑥)}. 369 
A family of Diffusion Map eigenfunctions �𝜑𝜑𝜎𝜎,ℓ(𝑥𝑥)�  for the model data. 370 

 The set of �𝑐𝑐𝜎𝜎,ℓ� coefficients. 371 
 372 
Steps 373 
 i) Training data selected to give a uniform GA histogram. 374 

ii) NLSA reconstruction of training data yields canonical developmental 375 
trajectory: model data {𝑥𝑥}, at uniformly spaced GA time points {𝐺𝐺𝐺𝐺(𝑥𝑥)}. 376 
iii) Embed model data with Diffusion Map at various kernel widths to create a 377 
family of eigenfunctions �𝜑𝜑𝜎𝜎,ℓ(𝑥𝑥)� of the Laplace-Beltrami operator. 378 
iv) For each kernel width σ, do. 379 
v) Obtain the set of �𝑐𝑐𝜎𝜎,ℓ� coefficients by inverting 𝐺𝐺𝐺𝐺(𝑥𝑥) =  ∑ 𝑐𝑐𝜎𝜎,ℓ𝜑𝜑𝜎𝜎,ℓ(𝑥𝑥)ℓ≥0  . 380 
vi) endfor. 381 

 382 
Reading (More than one visit of the same subject) 383 
Input 384 

Ultrasound measurements for each visit in a vector 𝑥̅𝑥 . 385 
Time interval(s) between visits. 386 

 387 
Output 388 
 Predicted GA. 389 
 390 
Steps 391 

i) For each visit, do. 392 
ii) For each member of the family of Diffusion Map eigenfunctions, and the 393 
associated kernel width σ, do. 394 
iii) Nystrom extension yields the extended eigencomponents �𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥)� . 395 
iv) For different number k of Diffusion Map eigenfunctions, do. 396 
v) Predicted GA for current (σ, k) is 𝐺𝐺𝐺𝐺����𝜎𝜎,𝑘𝑘(𝑥̅𝑥) ≡  ∑ 𝑐𝑐𝜎𝜎,ℓ𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥)ℓ<𝑘𝑘  . 397 
vi) endfor. 398 
vii) endfor. 399 
viii) endfor. 400 
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ix) For each member of the family of Diffusion Map eigenfunctions, and the 401 
associated kernel width σ, do. 402 
x) For different number k of Diffusion Map eigenfunctions, do. 403 
xi) Calculate intervisit time interval(s) from predicted GA’s for current (σ, k). 404 
xii) Calculate error(s) in intervisit time interval(s). 405 
xiii) endfor. 406 
xiv) endfor. 407 
xv) Return GA’s for (σ, k) with smallest intervisit time interval error(s). 408 
 409 

Reading (One visit) 410 
Input 411 

Ultrasound measurements for one visit in a vector 𝑥̅𝑥 . 412 
 413 
Output 414 
 Predicted GA, or message “An estimate with accuracy better than the typical 415 
  LMP-based estimates requires additional data”. 416 
 417 
Steps 418 

i) For each member of the family of Diffusion Map eigenfunctions, and the 419 
associated kernel width σ, do. 420 
ii) Nystrom extension yields the extended eigencomponents �𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥)� . 421 
iii) For different number k of Diffusion Map eigenfunctions, do. 422 
iv) Predicted GA for current (σ, k) is 𝐺𝐺𝐺𝐺����𝜎𝜎,𝑘𝑘(𝑥̅𝑥) ≡  ∑ 𝑐𝑐𝜎𝜎,ℓ𝜑𝜑�𝜎𝜎,ℓ(𝑥̅𝑥)ℓ<𝑘𝑘  . 423 
v) endfor. 424 
vi) endfor. 425 

 vii) Make a histogram of all the predicted GA. 426 
 viii) If histogram peak exists. 427 
 ix) Return location of histogram peak as predicted GA. 428 
 x) else. 429 

xi) Display message “An estimate with accuracy better than the typical LMP-430 
based estimates requires additional data”. 431 

 xii) endif. 432 
 433 
Nystrom Extension 434 
Input 435 
 Vectors �𝑥𝑥𝑗𝑗� . 436 

Kernel width σ. 437 
Diffusion Map eigenvalues/ eigenfunctions {𝜆𝜆ℓ,𝜑𝜑ℓ} for vectors �𝑥𝑥𝑗𝑗� with kernel 438 
width σ. 439 
Vector 𝑥̅𝑥 . 440 

Output 441 
Extended eigencomponents {𝜑𝜑�ℓ} for vector 𝑥̅𝑥 . 442 
 443 
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Steps 444 
 i) For each vector in �𝑥𝑥𝑗𝑗� , do. 445 

ii) Calculate squared Euclidean distance 𝑑𝑑𝑗𝑗2 between vector 𝑥𝑥𝑗𝑗 and vector 𝑥̅𝑥 . 446 
 iii) Calculate kernel 𝐾𝐾𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑑𝑑𝑗𝑗2 𝜎𝜎2⁄ �. 447 
 iv) endfor. 448 

v) Normalize kernel to give �𝐾𝐾𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� . 449 
vi) For each eigenvalue/ eigenfunction {𝜆𝜆ℓ,𝜑𝜑ℓ} , do. 450 
vii) Calculate extended eigencomponent 𝜑𝜑�ℓ = 1

𝜆𝜆ℓ
∑ 𝐾𝐾𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜑𝜑ℓ�𝑥𝑥𝑗𝑗�𝑗𝑗  . 451 

viii) endfor. 452 
ix) Return extended eigencomponents {𝜑𝜑�ℓ} . 453 

 454 
NLSA (time series) 455 
Input 456 

Data snapshots {𝑥𝑥} (possibly noisy) at given time points (possibly nonuniformly-457 
spaced). 458 

 Timestamps {𝑡𝑡} of snapshots. 459 
  460 
Output 461 
 Data snapshots {𝑥̅𝑥} (noise reduced) at uniformly-spaced time points. 462 
 Timestamps {𝑡𝑡̅} of snapshots. 463 
 464 
Steps 465 
 i) Order snapshots {𝑥𝑥} based on given timestamps {𝑡𝑡} . 466 
 ii) Concatenate ordered snapshots to give superframes 𝑋𝑋. 467 

iii) Concatenate and average ordered timestamps to give timestamps of 468 
superframes. 469 

 iv) Embed superframes with Diffusion Map to obtain eigenfunctions 𝜑𝜑 of the 470 
Laplace-Beltrami operator and Riemannian measure 𝜇𝜇. 471 
v) Project superframes onto the embedding space: 𝐴𝐴 = 𝑋𝑋𝑋𝑋𝑋𝑋 . 472 
vi) Perform singular-value decomposition of 𝐴𝐴 and retain only singular modes 473 
with significant singular values: 𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇, 𝑈𝑈

ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆
�⎯⎯⎯�  𝑈𝑈� , 𝑉𝑉

ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆
�⎯⎯⎯�  𝑉𝑉� , 𝑆𝑆

ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆
�⎯⎯⎯�  𝑆𝑆̅ . 474 

vii) Back-project: 𝑋𝑋� = 𝑈𝑈�𝑆𝑆̅𝑉𝑉�𝑇𝑇𝜑𝜑𝑇𝑇 . 475 
viii) Unwrap 𝑋𝑋� to give data snapshots {𝑥̅𝑥} . 476 
ix) Concatenate and average superframe timestamps to give {𝑡𝑡̅} . 477 
x) Return data snapshots {𝑥̅𝑥} and timestamps {𝑡𝑡}̅ . 478 

 479 
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 481 
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individual institutions and the regional health authorities where the project was 484 
implemented. Written informed consent was obtained from all participants. The sponsors 485 
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had no role in the study design, data collection, analysis, interpretation of the data, or 486 
writing of the paper. The following authors had access to the full raw dataset: RF, JV, 487 
SHK, ATP and AO. The corresponding author had full access to all the data and final 488 
responsibility for submitting the paper. 489 
 490 
Our first dataset pertained to 4607 healthy women with singleton pregnancies at low risk 491 
of adverse maternal and perinatal outcomes, who participated in the Fetal Growth 492 
Longitudinal Study (FGLS), one of the main components of INTERGROWTH-21st 493 
Project, was a large, multicenter, longitudinal, population-based project conducted 494 
between 2009 and 2016, in eight delimited diverse geographical urban areas: Pelotas 495 
(Brazil), Turin (Italy), Muscat (Oman), Oxford (UK), Seattle (USA), Shunyi County in 496 
Beijing (China), the central area of Nagpur (India), and the Parklands suburb of Nairobi 497 
(Kenya) 13,14. The primary aim was to study growth, health, nutrition, and 498 
neurodevelopment from early pregnancy to 2 years of age in populations of optimally 499 
healthy mothers.  A geographical area was a complete city or county, or part of a city 500 
with clear political or geographical limits, located at an altitude <1600m, with low-risk 501 
health indicators for perinatal morbidity and mortality, in which women receiving 502 
antenatal care had plans to give birth within the area free of, or with low levels of major, 503 
known, non-microbiological contamination 13.  504 
 505 
In the FGLS, pregnant women were recruited from the aforementioned populations, if 506 
they met the individual entry criteria of health, nutrition, education, and socioeconomic 507 
position, and accurate gestational age estimation based upon certain LMP, regular 508 
menstrual cycles and ultrasound confirmation of gestational age in the first trimester. The 509 
objective was to construct international standards for gestational weight gain, early and 510 
late fetal growth, newborn size and preterm postnatal growth 15-19.  The cohort enrolled in 511 
FGLS was followed up to 2 years of age, and evaluated for skeletal growth, nutrition, 512 
health, and the WHO gross motor milestones, as well as neurodevelopment and 513 
associated behaviors 20-22. 514 
 515 
The second dataset pertained to an unselected cohort of women recruited from six 516 
geographically diverse settings as part of the INTERBIO-21st Fetal Study, another main 517 
component of the INTERGROWTH-21st Project between February 2012 and December 518 
2015 (our second dataset).  The first three – Pelotas (Brazil), the Parklands suburb of 519 
Nairobi (Kenya), and Oxford UK – had been FGLS sites, whilst the others – Karachi 520 
(Pakistan), Mae Sot (Thailand), and Soweto (South Africa) – were chosen to include in 521 
the cohort with women at higher risk of pregnancy complications and adverse perinatal 522 
outcomes because of exposures, such as malnutrition, malaria and HIV.  All the women 523 
initiated antenatal care before 14 weeks of gestation; gestational age estimation was 524 
based on measurement of fetal Crown-Rump Length as this higher risk population was 525 
expected to have less regular LMP. All women underwent serial examinations with the 526 
same ultrasound protocol as FGLS, every 5 weeks (within 1 week either side) after an 527 
initial scan <14 weeks of gestation, and the growth and neurodevelopment of their infants 528 
were assessed at 2 years of age. 529 
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